Coalbed Methane Technology and Development

PETROTEL INC.

Dr. Anil Chopra
President and CEO

What is Coalbed Methane?

- The process of coal formation is known as coalification; it also produces large quantities of by-product gases (methane, CO₂, N₂..)
- Methane is found in coals either adsorbed on the coal surface, or as free gas in fractures and large pores, or dissolved in ground water.
- Original methane content 200 to 600 ft³/ton

What is Coalbed Methane?

Difference between conventional gas reservoir and coalbed methane reservoir

Coals

source coalification

gas storage

adsorption

flow path

fracture

prod. mech. diffusion, desorption

& Darcy flow

Gas Sands

migration from source

free gas under pressure

interconnected porosity

Darcy flow

Production Rate

Producing Time

Recovery Mechanism

Primary (SPE 20733, 'Validation of 3D Coalbed Simulation', G.W. Paul, W.K. Sawyer, R.H. Dean)

- Reduce Cleat Pressure by Producing Water
- CH4 Desorbs from Matrix and Diffuses to Cleats
- CH₄ and H₂O Flow to Wellbore

Enhanced Methane Recovery (EMR)

(SPE 24363, 'Modeling Coalbed Methane Production with Binary Gas Sorption', L.E. Arri, Dan Yee, W.D Morgan and M.W. Jeansonne)

- Injected N₂ in Cleats
- N₂ Adsorbs in Matrix
- Reduce Partial Pressure of CH₄
- CH₄ Desorbs from Matrix and Diffuses to Cleats by Sorption Displacement & partial pressure reduction
- CH₄, N₂ and H₂O Flow to Wellbore

Coal as Reservoir Rock!

$$\phi = 5 \pm \%$$

$$K_{air} = 0.1 \text{ to } 10 \text{ md}$$

Critical Coal Reservoir Parameters

Methane Content
500 SCF/ton equivalent to 2500 psig gas
reservoir

Cleat Development major gas migration pathway

Location of the San Juan Basin

San Juan Basin Coalbed Methane

Remaining Reserves 280 Billion M³

Current Production 70 Million M³/D

Number of Producing Wells 3,500

Number of Operators 90

Top 20 Operators Produce 90% of Production

Fruitland Coal Types: Bright Banded Coal

Well cleated, abundantvitrain, low density, low ash (< 15%)

CT image

Core photo

CT axial image

Fruitland Coal Types: Dull Banded Coal

Some cleating; moderate vitrain, density, and ash (15-40%)

CT image

Core photo

CT axial image

Fruitland Coal Types: Non-banded Coal

Poor cleating, low vitrain, high density, high ash (40-80%)

Relationship of Cleating to Productivity

- Low ash, well-cleated coal is the best gas resource
- Bright banded coals have best potential for high perm
- Cannot relate degree of cleating directly to perm
- Cleats may not be permeability conduits
 - Closed by local stresses
 - Plugged by fracture filling
- Cleats may have enhanced permeability
 - Joints and faulting increase connectivity

Enhancement of Permeability by Fracturing

Electron microprobe photo

Core jointing photo

Reduction of Permeability by Mineralization

Plugged cleat network

Kaolinite filling cleats

Digital Log Data Base

Basin Wide Data Base

Enhances Interpretation

- Digital Log Analysis
 - Lithology Correlation Based on Gamma Ray and High Resolution Density Logs
 - Gas Content Correlation a Function of Temperature, Pressure and Ash Content
- Facilitates Cross Sections/Fence Diagrams
- Resource Mapping (Gas in Place)

Ignacio Blanco Fruitland

Ignacio Blanco Gas Field

Location Map

Animas Ss		
Kirtland	Upper Shale	
	Farmington Ss	
	Lower Shale	
Fruitland Coal		
Pictured Cliffs Ss		•
Lewis Shale		
Mesaverde	Cliff House Ss	
	Menefee Shale	
	Point Lookout Ss	•
Mancos	Upper Shale	
	Lower Shale	
Greenhorn Limes	stone	
Graneros Shale		
Dakota Ss		•
Burro Canyon Ss		•

Cretaceous Strat Column

Ignacio Blanco Fruitland

Central Treating Sites 8

- Gas Lift
- Low Pressure Gas Gathering
- Water Gathering

Wells	109 Producers
	5 Water Disposal Wells

	1995	<u>1996</u>
Production	$3.7 \text{ Million M}^3/D$	5.0 Million M ³ /D
Compression	24,000 HP	34,500 HP

Automated

Field Development Optimization

S. Ute 14-3,32-10 Production Rate

Key Components of Production Optimization Program

Gathering System Work

- Compression Additions
- Trunk System Pipeline Looping

Remedial Well Work

- Sidetrack/Casing Mill-Out Open Hole Completions
- Re-Stimulation of Poor Performing Wells
 - Improved, Low Damage Designs
- Tubing Upgrades
- Well Site De-Bottlenecking

Conventional Well Pressure vs GIP

Coalseam Well Pressure vs GIP

Coalbed Methane Well Completions

Side Track to Open Hole Cavity Completion

Coalbed methane data (gas in place)

- Gas in place calculation
 - Net coal thickness
 - Effective porosity of the coal (cleat system)
 - Initial water saturation in the cleat system
 - Initial fluid pressure
 - Gas content of the coal
 - Coal density
- Total gas in place = free gas-in-place + sorbed gas-in-place

Reserve Determination - Minimal Production History

- Gas-In-Place Determination
 - Coal Volume Mapping Program Integration of Digital Data Base
 - Gas Content Correlations
 - Based on Core Analysis
 - Function of Pressure, Temperature and Ash Content
- Recovery Factor Based on Numerical Simulation

Reservoir Simulation

World Class Numerical Simulators

- Predictive Studies
 - Highly Dependent Upon Reservoir Description
 - Complex Water/Gas Relative Permeability
 - Stratified, Heterogeneous Reservoir Rock
 - Variable Permeability Stress, Degassing
- Good Tool to Evaluate Historical Performance

Simulation - Numerical Model

- Model as a dual porosity system
 - fracture : cleats
 - matrix : coals
- Use the Langmuir isotherm (primary) / the extended Langmuir isotherm (EMR) for simulating the adsorption/desorption

Simulation - Pilot Studies

- 1/4 of 320 acres
- 2D areal 10 x 10
- Permeability 5 md
- Coal Thickness 37. ft
- Coal Density 1.33 g coal/cc coal
- Cleat Porosity 0.1%
- Initial Pressure 1561 psi

Simulation - Primary

Simulation - Enhanced Methane Recovery (N2 vs. CO2 injection)

Artificial Lift

- Gas Lift (Preferred Method)
 - Flexible to Widely Varying Water Rates
 - Requires Gas (Potential Problem for Pilot)
 - Not Adversely Impacted by Solids Production (Coal Fines and Frac Sand)
 - Convert Gas Lift Compression to Sales as Wells Ramp and Dewater
- Beam Pump
 - Frequent Maintenance (Solids)
 - Gas Interference
 - Common
 - Low Bottomhole Pressure

Artificial Lift (Continued)

- Progressive Cavity Pump
 - Better Tolerance to Solids than Beam Pump
 - Low Bottomhole Pressure
- Electric Submersible Pump
 - High capacity
 - Gas Interference

Horizontal Wells

• Design

 Horizontal wells can be designed to maximize the intersection with the fracture network in the coals thus enhancing productivity

Risks

- Formation collapse
- High pressure drop in the wellbore
- Cost

Conclusions

- Bright banded coals have the highest quality
 - well cleated, low density, low ash (<15%)
- Others coals (15-80% ash) have poorer quality
 - need to understand their gas content, permeability
- Carbonaceous mudstones (>80% ash) are non-reservoir
- Permeability is enhanced by faulting
- Permeability is reduced by cementation
- Bulk density tool does not capture reservoir heterogeneity
 - need to try a microlog, borehole televiewer, or FMI

Conclusions

- Production of CBM from San Juan Basin is 6.8 MM m³/day
- Production from CBM wells can be increased by:
 - Sidetracks and open-hole completions
 - Stimulation of poorer performing wells
 - Upgrades to gathering and compression systems
- Technology is essential for success:
 - World-class geological evaluation
 - numerical simulators and characterization tools
 - Completion design and execution
 - CT density and microprobe for coal characterization